scipy.sparse.random#
- scipy.sparse.random(m, n, density=0.01, format='coo', dtype=None, random_state=None, data_rvs=None)[source]#
Generate a sparse matrix of the given shape and density with randomly distributed values.
Warning
Since numpy 1.17, passing a
np.random.Generator(e.g.np.random.default_rng) forrandom_statewill lead to much faster execution times.A much slower implementation is used by default for backwards compatibility.
Warning
This function returns a sparse matrix – not a sparse array. You are encouraged to use
random_arrayto take advantage of the sparse array functionality.- Parameters:
- m, nint
shape of the matrix
- densityreal, optional
density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.
- formatstr, optional
sparse matrix format.
- dtypedtype, optional
type of the returned matrix values.
- random_state{None, int,
numpy.random.Generator, numpy.random.RandomState}, optionalIf seed is None (or np.random), the
numpy.random.RandomStatesingleton is used.If seed is an int, a new
RandomStateinstance is used, seeded with seed.If seed is already a
GeneratororRandomStateinstance then that instance is used.
This random state will be used for sampling the sparsity structure, but not necessarily for sampling the values of the structurally nonzero entries of the matrix.
- data_rvscallable, optional
Samples a requested number of random values. This function should take a single argument specifying the length of the ndarray that it will return. The structurally nonzero entries of the sparse random matrix will be taken from the array sampled by this function. By default, uniform [0, 1) random values will be sampled using the same random state as is used for sampling the sparsity structure.
- Returns:
- ressparse matrix
See also
random_arrayconstructs sparse arrays instead of sparse matrices
Examples
Passing a
np.random.Generatorinstance for better performance:>>> import scipy as sp >>> import numpy as np >>> rng = np.random.default_rng() >>> S = sp.sparse.random(3, 4, density=0.25, random_state=rng)
Providing a sampler for the values:
>>> rvs = sp.stats.poisson(25, loc=10).rvs >>> S = sp.sparse.random(3, 4, density=0.25, random_state=rng, data_rvs=rvs) >>> S.toarray() array([[ 36., 0., 33., 0.], # random [ 0., 0., 0., 0.], [ 0., 0., 36., 0.]])
Building a custom distribution. This example builds a squared normal from np.random:
>>> def np_normal_squared(size=None, random_state=rng): ... return random_state.standard_normal(size) ** 2 >>> S = sp.sparse.random(3, 4, density=0.25, random_state=rng, ... data_rvs=np_normal_squared)
Or we can build it from sp.stats style rvs functions:
>>> def sp_stats_normal_squared(size=None, random_state=rng): ... std_normal = sp.stats.distributions.norm_gen().rvs ... return std_normal(size=size, random_state=random_state) ** 2 >>> S = sp.sparse.random(3, 4, density=0.25, random_state=rng, ... data_rvs=sp_stats_normal_squared)
Or we can subclass sp.stats rv_continous or rv_discrete:
>>> class NormalSquared(sp.stats.rv_continuous): ... def _rvs(self, size=None, random_state=rng): ... return random_state.standard_normal(size) ** 2 >>> X = NormalSquared() >>> Y = X() # get a frozen version of the distribution >>> S = sp.sparse.random(3, 4, density=0.25, random_state=rng, data_rvs=Y.rvs)